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1.0 Summary

A conceptual design of a calorimeter is presented. The system equations
are derived and solved. An out-of-pile experiment is proposed to determine
the wall heat transfer coefficient and the turbulence factor o, which re~
lates the bulk temperature to the centerline temperature. The calorimeter
will be capable of operating continuously over a complete reactor cycle at
full reactor power.

2.0 Introduction

The purpose of this paper is to show the analytical basis and conceptual
design of a gamma heating calorimeter which provides a continuous indication
of the gamma heating throughout a reactor cycle at full power.

In what follows, the concept is discussed first. Then the equations
governing the system are derived and solved. Numerical methods of solving
the gamme heating equations are discussed. Also the number of thermocouples

reguired for the temperasture profile is discussed. TFinally a practiecal de-
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sign which meets engineering constraints is proposed.

3.0 Symbols
A cross sectional area of flow tube, £t2
Ay flow area; ft2

C1,C2,Cz defined on p. 7

Cy specific heat capacity of water, Btu/(1b)(°F)

h heat transfer coefficient, Btu/(hr)(ftz)(oF)

In defined on p. 10

K thermal conductivity of flow tube, Btu/(hr)(ft)(°F)
P inside perimeter of flow tube, ft

T™ X-52295%
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aq,, differential amount of heat transféred from flow tube to fluid
stream, Btu/hr

dap differential amount of heat generated in fluid stream, Btu/hr

damp total incremental heat gained (dg, + dap), Btu/hr

Q average heat generation rate per unit volume, Btu/(hr)(fts)

Q(x) heat generation rate per unit volume at position x, Btu/(hr)(fts)
Re Reynolds number, dimensionless

T average bulk water temperature, °F

Tﬁ(x) bulk water temperature at position ' x, °F

T centerline temperature of flow stream, °F

T average surface temperature of flow tube, °p

T (x) surface temperature at position x, O

w

T thermocouple temperature, °p

w mass flow rate, 1b/hr

X " position in ¢hannel, ft

o turbulence factor, dimensionless
B,Y defined on p. 8

I(x) mass heat generation rate at position x, watts/em
T dummy varisble

Jat) time

oy water density, 1b/ft°

oM density of flow tube, 1b/ft’

P defined on p. 8

4.0 Concept

A sketch of the calorimeter is shown in figure 1. The idea is to
insert a vertical flow tube into a Plum Brook Reactor beryllium L-piece.
A known mass flow of water moves down through the tube, and the temperatures
of the water and the wall are sensed as the water traverses the flow tube.
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When all the heat being generated in the tube is transferred locally to
the water, and when the flow is known accurately, it is possible to con-

struct the gamma heating profile in the channel from the measured temper-
ature profiles.

Water is supplied to the flow tube at a known flow rate and temperature.
The water flows down through a tube to the instrumented section of the flow
tube which is located in the core. The flow is adjusted and measured by a
calibrated flow meter located outside the reactor tank. Water exhausting
from the flow tube mixes with the primary water exiting from the reactor core.

Two concepts are examined. One is a bulk rise calorimeter and the other
a film drop calorimeter.

The bulk rise calorlmeter works on the princ1p1e that the bulk temper-
ature rise of a known water flow rate is directly proportional to the total
heat energy deposited and 1nversely proportional to the mass flow rate.

The film drop calorimeter works on the principle that the local film
drop is directly proportional to the local heat energy deposited and inverse-
ly proportional to the local heat transfer coefficient and surface area.

The proposed calorimeter uses both concepts. Thermocouples in the
water and on the wall allow the determination of the gamma heat by both
methods.

The calorimeter is designed to operate at high powers in the PBR. 1In
addition, the calorimeter can operste continuously over a complete reactor
cycle, and thus give a continuous indication of what effects rod bank height
and fuel burnup have on the gamma heating.

5.0 Derivation of Eguations

‘The following is a derivation of the coupled differential and linear
equations which mathematlcally describe the calorimeter system. . Equations
to describe the wall temperature, bulk temperature, and thermocouple temper-
ature are derived.

‘5.1 Wall Temperdature:

Consider a small circular ring of length
&x, with a cross sectional area A, en inside
perimeter P and a wall thickness +t. As-
sume the ring is & material with a thermal con-
ductivity K. An average volume heat genera-
tion rate Q, between x and x + OLx, is as-
sumed to be depositing heat uniformly in the
ring. The outside of the ring is adiabatic,
but heat can enter or leave through either the
left- or right-face by conduction. Heat may
also leave the inside wall by convection to a
stream with an average (between x and x + Ax) reference temperature Tg.
The heat transfer coefficient h is assumed constant over the length of the
ring and is defined by,
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where T is the average ring temperature.

Since the temperature of the ring varies only in the x-direction, the
differential equation describing the temperature will be one-dimensional and
may be derived by means of a simple heat balance:

Heat conducted in Heat generated): Heat conducted out Heat lost by
through the left " in the ring through the right convection to
face during time + during time = |face during time t lstream during
Ne MO s} , time A8
aT = aT , - =
-KA 3% A8 + Q(A + AX)NO = -KA = 08 + h(P » &x)(T ~ Tg)AP (1)
X X+HAX

The derivative (dT/dx)|x+Ax can be expressed by the mean value theorem in

terms of the derivative at x:

ar
ax

dT
- T
X

b AV S

where M is a point somewhere between x and x+Ax. Substituting this in
equation (1) and rearranging we get,

KAdzT Ax - (P - &x)(T - Typ) = -Q
aT R - Tp) = -Q(A + Ax) (2)

2
dx M

Now dividing through by (K + A - Ax) and letting the length Ax of the ring
become vanlshlngly small forces the point M to approach the point x and

T TB, and Q approach the value of the point x, giving

2
LI . B 10 - T(0) - - alx) (3)

If the wall is of uniform density py, then Q(x) = Py * I'(K), where I'(x)
is the mass heat generation rate at point x. The final equation for the
wall is then,

dém (x) hP

- o [T,00 - Tp(0)] = - L T(x) (4)

dx

5.2 Bulk Temperature:

As the fluid stream flows through the ring, it picks up heat from the
wall through the convective process (dqwg Ag) and has heat generated internally
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by the mass heat generation rate (qu N8). 1In a small section of length
dx a&bout x, the total incremental heat gained (dqp « A8) in time A8
is given as,

dap 48 = dg, AP + dgp A9 (5)

Now 'dqW is determined from the definition of the heat transfer coefficient,

dq,, hd.A(TW -Tg) =h - de('I'W - TB)

and
dap = pg - I‘(AH - dx)

where I' is the mass heat generation rate, Ay is the flow area, and PH
is the density of water; Then equation (5) becomes,

dap &8 = [thx(TW - TB) + pHI‘Ade]Ae (8)

The heat which is added to the water causes a temperature rise, ATy, which
is defined by,

dgp = w Cp dTy (7)

Combining equation (7) with equation (6) gives,

pr dTB = hP dx(TW - TB) + pHFAH dx, (8)
which can be rearranged to give the bulk temperature equation:
ar_(x) pHA
B hP H -
= T (x) - Th(x)] + ———T(x 9
o T o () - T o T (9)

5.3 ‘Thermocouple Temperature:

With the thermocouples’ located somewhere :in the’ channel, the problem bé-
comes. one of relating the thermocouple temperatures to the bulk temperatures.
A complete solution requires that the temperature and velocity profiles be
known. Work done by Martinelli (ref. 3) under the simplifying assumptions
of temperature-independent water properties, well-developed turbulent flow
and the Nikuradse velocity profile has resulted in a predicted relation be-
tween the wall temperature, the centerline temperature, and the bulk temper-
ature. The relation between these three variables is expressed as,

T - TB

o(Re, Pr) = —%

———s (10
Tw = Tc )

where o is function of the Reynolds and Prandtl nunbers.
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An investigation of this relation over the range of Reynolds and Prandtl
nunmbers for the typical calorimeter design presented in Section 10 shows that
o« 1is nearly constant (fig. 2). The parameter o is then taken as a measure
of turbulence, since as T, = Tp, o - 1. For the calorimeter design presented,
a = 0.91, there is a predicted temperature difference of about 15° F between
the bulk and the centerline temperature (fig. 3). This indicates the gross
error which would be involved in assuming that the centerline temperature is
the same as the bulk temperature.

If the thermocouple is positioned in the channel such that it is very
nearly reading the bulk temperature then o will be approximately 1 and
thus reduce this uncertainty. Assuming that the thermocouple is located some-
where between the wall and the centerline of the channel such that the thermo-
couple is reading approximately the bulk temperature, then equation {10)
becomes,

T, - Ty

(I,(Re, PI') = -T:,_-—Tm

(11)

where T, 1is the assumed average water temperature and Ty = Tg. Now if «
is nearly equal to 1 and is a constant then equation (11) suggests the linear
relation,

Ty = (%)TB - (} ; )IQ (12)

Another source of error arises when the fluid temperature is measured.
Disturbing influences of gamma heating and conduction in the thermocoupie
itself may cause the thermocouple to read a different temperature than the
stream temperature at the junction. For example, gamma heating in the sen-
sing tip will cause a temperature drop between the sensing tip and the stream.
In addition with the thermocouple protruding from the wall, any heat con-
ducted down the thermocouple from the wall to the sensing tip will tend to
raise the indicated temperature even higher above the stream temperature.
Both effects can be analyzed effectively by forming the general model given

by,

TT = ale + azTW + asr\ (13)

The coefficients of this relation are dependent on thermocouple construction
and on the calculational model used to describe the thermocouple.

Eliminating T, from equation (12) and equation (13) gives
Tp = CT, + CoTy + CaT (14)

where
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Cz = ag

Equation (14) expresses a linear relation between the thermocouple tempera-
ture Tq, which will be measured, and the wall and bulk temperatures and
the gamma heating.

The coefficients a., a,, and s can be determined analytically once
a physical model is set up for the thermocouples. The parameter o must
be determined experimentally.

6.0 Mathematical Description of the System and its Solution

Equations (4), (9), and (14) constitute a system of coupled differential
and linear equations:

a%m (x) |
"T&;' - BB (%) - Tp(x)] = - 22 (x) ()
aTp(x) A

gxx - SCPP [Ty(x) - Tp(x)] = f%g-f I'(x) (9)
Tp(x) = C1T,(x) + CoTp(x) + CzI(x) (14)

This system can be greatly simplified if the axial conduction of heat in the
wall can be made negligible. Physically, this will happen 1f the conductivity,
K, is low, the area A 1is small, or the heat transfer coefficient h is

very large. In order to determine whether the axial conductivity in the

wall could be neglected, a one-dimensional heat transfer calculetion was per-
formed using the proposed calorimeter design. The results of the calcu-
lation in indicated that about 99 percent of the heat generated in the wall
was transferred radially to the stream. This proves that for this particu-
lar calorimeter design neglect of the axial conductivity introduces a very
small error.

If equation (4) is multiplied by XA and assuming that XA - 0, then
the system becomes.

0 = hP[T_(x) - Tp(x)] - pyyL(x) )

dTp(x) A

- B (0 - e+ 1) ) (15)
P p

Tp(x) = C3T_(x) + CoTp(x) + C.I(x) )
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Fliminating T_ from equation (15) gives the following simplified system,

aTg(x) | ey * eptm

ax wC r(x)
f (16)
oMM
Tp(x) = Tp(x) +[%1 <5 * Cs| T(x)
Integration gives the simplified integral equation,
b'd
TT(x) = TB(O) + 7 M(t)dr + B T(x) (17)
X0
where
PMiM T PEH PM
T T, PR YO

By differentiating equation (17), then integrating by perts, the final form
of the solution for I'(x) 1is,
x

Tp(x) | Ta(x0) -(v/B)(x-x) _ X o~ (Y/B) (x-7) Tp(t)dr  (18)

r(x) = =5 B 52

X0

As can be noticed, the simplified system, equation (15), was reduced
to an integral equation for TI'(x), where the known temperatures were assumed
to be those measured with the thermocouple protruding into the water stream.
The system, equation (15), can also be solved for T(x) in terms of the
wall temperature, giving,

X
T, (x) = Tg(xy) + v 4 r(t)ar + or'(x) (19)
0

where

¢ = [DMAM]/[hP]

This could be solved for T(x) in the same manner as equation (18). If both
wall and channel temperatures are measured, then equations (17) and (19) can
be solved for I'(x) directly, giving:

T (%) - Ty(x)

) = T =0 - Ca) (20)
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The advantage of equation (20) is that it does not contain the param-
eter «. The only significant nonlinearity is the heat transfer coefficient.
If both wall and water temperatures are monitored, then equation (20) pro-
vides a good means of obtaining I (x). Equation (20) is also independent
of the gamma heating in the water (py, Ay, I'(x)).

Finally, thermocouples are to be placed at the inlet and at the outlet
of the calorimeter flow tube. Flow mixing devices before these two thermo-
couples insure that the total AT is measured accurately. The integral of
the gamma heating down the channel is thenobtained as«a:check on:the results
from equations (18), (19), and (20).

7.0 Numerical Methods of Solving the Integral Eguations

There are two methods of solution which may be used for these equations.
The first utilizes the closed form solution for I'(x) (eq. (18)). This
equation was derived under the assumption that the coefficients v and B
are constant, or can be considered constant with a small error resulting.
The second method involves an iterative procedure and is a more direct ap-
proach, in that it operates directly on the integral equation (17).

Both methods require that a temperature profile be measured. The sug-
gested method of preparing this temperature profile from the table of dis-
crete measured values, which will be taken from the thermocouples, is to
first smooth the experimental data points. This may be accomplished ana-
lytically. Then, using a plot of the smoothed data, solve for I'(x). This
has the effect of removing random scatter in the thermocouple points before
the errors can be propagated into the solution for TI(x).

© 7.1 Bolution of T'(x) for ¥' and "B Constant:

For equally spaced data points located a distance Ax apart and taken
from a smoothed plot of the measured temperature profile, equation (18) gives,

M(%,47) = % [TT(Xn+l)] + % [TB(XO)G-(Y/B)Xn+l]

f\xn+l

- -j.zi/ e~ (¥/B) (*n42-7) 1o(1)ar (21)
B
X0

The integral term can be written:

Xn+l  _ -
_[2_ n e (T/B)(xn+l 7) T (7)ar
B o
o Xn+l
_ _1; o (Y/B)%p41 e(r/B)T m(c)ar
B

X0
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lxn
and by defining: I, E(J/A e(T/B)T Tp(T)dT, equation (21) becomes
X

0

D(xpey) = %[?T(Xn+l)3 + %[%B(Xo) e_(Y/B)Xn+%] _ gé e‘(Y/B)xn+1[?n+i] (22)

A recursion relation expressing I,;; in terms of I can be found once a
method of numerical integration is chosen. For the trapezoidal rule,

Xn+l Xn+l
In+1 =f /e Tp(T)at =fn (T/B)T m(v)ar +/ /e Tp(7)ar
X0 X0 Xn
X +1
= I, +L//7 * e(Y/B)T Tp(T)dr
Xn

and

Iy = Ip + (&x/2) e(Y/B)Xn Tp(xy) + Tplxpe) (¥/B)Ax (23)

By using equation (23) and values of Tp from the smoothed curve con-
construct a table of values of I,. Then using equation (22), construct a
complete profile of gamma heating values.

7.2 Solution of I'(x) for ¥ and B not Constant:

Equation (17) can be rearranged to give,

Plx) = Tp(x) g TR(0) ) % L//wx . (24)
X0

where:

T = Y(T;X)) B = B(T:X)-

The method of solution is to choose an initial arbitrary function Po(x).
With this function under the integral sign and after performing the in-
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tegration, compute a revised function T.(x) using the known temperature
distribution Tp(x). Then insert T3(x)” under the integral sign and cal-
culate To(x). The series of functions T,(x) generated in this way should
converge toward the final steble value. The temperature dependence of 7
and B can also be included in the iteration process. This method of solu-
tion results in a Neumann series of functions.

8.0 Number of Thermocouples Required and Interpolation Technigque

The shape of the temperature profile to be measured is (to a first ap-
proximation) the same as the integrated gamma heating shape shown in figure 4.
If this function is differentiated twice the shape shown in figure 5 results.
It can be seen from figure 5 that this second derivative of the temperature
profile can be approximated by straight line segments.

If the second derivative of a function is a straight line, this can then
be expressed as

asr

s =m+Db (25)
dx

Integrating equation (25) twice gives,

= 3 2
T = azx° + 8% + a.x + 8, (26)
Thus, the temperature profile can be approximated in plece-wise segments by
cubic equations. Each cubic equation reguires coefficients s Boy By, ao)

to be specified completely. These four coefficients can be de ermlned
making measurements at four distinct points and solving the resulting four
simultaneous linear equations for (as, 8oy 81, ao).

It is assumed that any measurement of temperature will have some random
error gssociated with it. The amount of error is not known in advance, but
some means of reducing the effects of this error is desired. A method for
doing this is to perform a least squares analysis on the data. This reqguires
that the nunber of measurements exceed that number which is exactly required
for a mathematical description of the system, that is, that the system be
over-determined.

For the temperature profiles in this experiment, five measurements over
any of the straight line segments discussed above will give a slightly over-
determined system. Then at least five measurements must be made over the
shortest line segment as shown in figure 5. This would be for the rods-in
case with the line segment running between +4-in. and -2-in., or over a
6-in. length, which would indicate a meximum thermocouple spacing of 1.25
inches.

Since the straight-line segments in figure 5 shift as a function of
bank height, the least squares method of fitting to preselected line seg-
ments is inadequate for practical application to this experiment. The ar-
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gument for the amount of points required to perform a successful least
squares fit (or to have a slightly over determined system) is still wvelid
but a better method of eliminating the rendom error is required. If the
least squares smoothing is performed over line segments, it is known as
smoothing-in~the-small, while if performed over the entire curve it is
known as smoothing-in-the-large. For smoothing-in-the-large, all the empir-
ical data is expanded in a series of orthogonal functions, such as a Fourier
Series. If a Fourier Series is used, special techniques are available to
quarantee very rapid convergence of the series (coefficients decrease as
n'3). To remove the random data scatter, the series is truncated at the
point where the series coefficients cease to follow the n~3 law and be-
come randomly distributed in amplitude. When the random amplitude terms
are rejected, so is most of the noise.

A requirement of the application of the Fourier Series technique of
smoothing-in-the-large is that the data points be equally spaced. To have
the data slightly over-determined it is necessary to have the thermocouples
spaced no farther apart than 1.25 inches. Thus over the region of interest,
from +16-in. to -18-in., referenced to the core horizontal midplane, it is
necessary to have a minimum of 28 wall thermocouples and 28 thermocouples
located in the channel stream.

The proposed method of data reduction is as follows:

(1) Perform a Fourier analysis on the thermocouple data points and
truncate the series to remove most of the noise or experimental scatter.

(2) Use the truncated Fourier series to plot a smoothed curve for the
temperature profile.

(3) Use the smoothed temperature profile to calculate the gamma heating
distribution using equations (20), (22), or (24).

The main advantage of smoothing the data analytically rather than by
eye is to get a quantitative measure of the noise in the system. This can
be interpreted as a measure of system performance.

9.0 Experiment to Determine o and h

The proposed out-of-pile experiment would use an electrically heated
flow tube having the same dimensions as the in-pile flow tube. The tube
would be vertically oriented with water pumped through it at a known mass
flow rate.

Electrically heating the flow tube will provide & constant heat flux
given by,

(a/8), = (a/L),/P = (ap/L)/P (27)

where P 1is the wetted perimeter, g is the total heat input along the
heated length of the tube and L is"the heated length.
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This constant heat flux, with no axial conduction in the tube, will
give a linear bulk temperature rise:

T%(xf) - Tb(xo)

Tp(x) = Tp(x,) + X o %, X (28)

vhere (xp - XO)= L is the heated length.

To determine h, use the definition of the heat transfer coefficient

(a/A),
blx) = Ry T ) (29)

Substituting equation (28) into (29) gives

(a/p),

n(x) = T, (5]~ (%) (20)
[&%(x) - {%b(xo) * ( > if - ¥2 . )%}]

-

The parameter o, assuming the coupling between the wall and the thermo-

couple is negligible, can be determined by noting

¢y = (@ - 1)/a
02 = 1/a
C_=0

3

This implies that TT = Tm.
Then from the basic definition of «,

T (xp) - T (%)
T (x) - [Tb(xo) + (b(xif - xb(x )x]

a(x) = T () - I > (51)

The experiment requires that temperature profiles be taken down the wall

and in the channel stream at a number of flow and heating rates. o and
h would be correlated for each position (x).

10. Typical Calorimeter Design

The problem of recovering the gamma heating from the calorimeter can
be solved only if the following design constraints are true. These are:
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(a) Flow is turbulent which gives a reasonably large heat transfer coef-
ficient and insures complete mixing of the bulk water.

(b) The tube wall is thin enough to make axial conduction negligible.

(¢) The tube wall is large enough to have most of the heat (=80 percent)
produced in the walls rather than in the coolant water.

(d) The tube should be small in diameter so that the local variation in
gamma heating across the tube is small. However, the inside diameter of the
tube cannot be too small since clad thermocouples must extend vertically
from the wall into the stream. If the wetted length of the thermocouples is
too short, the wall temperature will have a disturbing influence on the
thermocouples.

(e) The thermocouples should be as small in diameter as possible to re-
duce the effect of direct gamma heating in them. They should be spaced close
enough together to guarantee good data analysis in the presence of experi-
mental error.

(f) The wall temperature must not exceed saturation temperature.

(g) Flow requirements must be capable of being met by the 30 psia AP
which is available across the ring header.

(h) The secondary heating effects must be small.

v v\-‘- noaattmaAd + ri et PAr +
CI1v (SR v oLUL v

nm o cxis 1 crimet i wa.s e
gamma heating in LA-7 at 60 MW, as shown in figure 6. A design which sat-
isfies the above constraints is given below:

M~ <
i€ €nvirdso

(a2) The flow through the calorimeter is driven from the ring header.
The flow is regulated from above the tank, where the mass flow rate and inlet
bulk temperature are measured. Water flows through the vertical tube and
exhausts into the core exit stream. The nominal mass flow rate is 438 lb/hr.

(b) The flow tube is constructed of stainless steel. The tube has an
inside diameter of 0.375-inches and an outside diameter of 0.572-inches.
Wall thickness is 0.0985-inches. At the mass flow rate of 438 lb/hr, the
nominal velocity in the tube is 2.58-ft/sec. The Reynolds number varies
from 15 800 at the assumed inlet temperature to 29 600 at the elevated outlet
film temperature.

(c) The bulk inlet temperature is 135° F. The total bulk rise is approx-
imately 70° F.
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(d) The heat transfer coefficient varies down the channel from a value
of 904 Btu/(hr)(ft2)(°F) at the inlet to 1234 Btu/(hr)(ft2)(°F) at the hot’
Bpot, based on the film temperature and the modified Colburn relation

0.33
£

(e) The wall temperature is about 308° F at the hot spot, using the nom-
inal mass flow rate of 438 Ib/hr (saturation temperature is approximately
330° F at the outlet pressure). In practice, the flow will be manually ad-
Justed to keep the measured wall temperatures below saturation.

(W0)p = 0.025 (Re)y © (Er)

(f) The secondary gamme effects will be approximately 10 percent of the
primary gamma heating.

Figure 3 is a plot of the nominal wall, bulk, and centerline temperatures
down the channel. TFigure 7 shows some of the temperature dependent param-
eters as functions of the wall and bulk temperatures down the channel for this
design.

The annular space between the flow tube and the containment can is evac-
uated to eliminate conduction and convection heat loss from the flow tube
to the containment can. The temperatures of the clad thermocouples are en-
tirely dependent upon radiant heat transfer. Calculations with ¢ = 0.10
of the stainless steel clad give a temperature of 2020° F for the clad at
the hot spot, which is excessively high. If the cladding were plated with
platinum (e = 0.97), the resulting temperature would be 953° F, which is
much more acceptable. Thus it is imperative that the clad thermocouple leads
be plated with platinum or other material of high emissivity where they pass

through the evacuated space.

11.0 Calorimeter Accuracy

The accuracy of the calorimeter results depends on the ability to mea-
sure the heat transfer coefficient h and the turbulence factor o« in the
out-of-pile experiment. It also depends on the measurement of the water and
the wall temperatures during both the in-pile and the out-of-pile experiments.
The largest error involved in determining TI'(x) will be in the determination
of h and «. It was determined that if equation (20) were utilized in
determining T'(x), the accuracy of the gamma heating would depend mostly on
how accurately h and o can be determined. For example, if a 10 percent
error existed in both h and a«, the total error in the gamma heating would
be asbout 14 percent.

If the thermocouple is positioned in the channel stream such that it
is very nearly reading the bulk tempersture, then o will be approximately
1. This will reduce this uncertainty to a few percent. The errors involved
in determining the heat transfer coefficient will be the electrical heat in-
put, the mass flow rate, the tube dimensions, the thermocouple readings, and
and the physical properties of water. It also depends on how closely the

cut-cf-pile data fit whatever correlations are used. For the out-of-pile
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test the electrical heat input can be determined to within 5 percent by in-
duction heating. For the 3/8-in. ID tube the mass flow rate can be measured
to within 2 to 3 percent. The thermocouples can be calibrated to within a
few tenths of a degree. It seems reasonable to expect an uncertainty of less
than 10 percent in h.

The uncertainty finally quoted after in-pile measurements are done will
depend a lot on how well the 3 sets of data (from film drop, bulk rise, and
integral bulk) agree. But an uncertainty of 10 to 15 percent (95 percent
confidence) is expected, while considerably better accuracy is possible if
all the data, in~ and out-of-pile, agree.
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